
Dynamic Memory Allocation

Allocate memory on demand…

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

Dynamic Memory Allocation

3

Problem with arrays

Sometimes

• Amount of data cannot be predicted beforehand
• Number of data items keeps changing during program execution

Example: Search for an element in an array of N elements

One solution: find the maximum possible value of N and allocate an array
of N elements

• Wasteful of memory space, as N may be much smaller in some
executions

• Example: maximum value of N may be 10,000, but a particular run
may need to search only among 100 elements

• Using array of size 10,000 always wastes memory in most cases

4

Better solution

Dynamic memory allocation

• Know how much memory is needed after the program is run

• Example: ask the user to enter from keyboard

• Dynamically allocate only the amount of memory needed

C provides functions to dynamically allocate memory

• malloc, calloc, realloc

5

Dynamic Memory Allocation

Normally the number of elements in an array is specified in the program

• Often leads to wastage or memory space or program failure.

Dynamic Memory Allocation

• Memory space required can be specified at the time of execution.

• C supports allocating and freeing memory dynamically using library routines.

6

Memory Allocation Process in C

Local variables

Free memory

Global variables

Instructions
Permanent storage area

Stack

Heap

7

Memory Allocation Process

The program instructions and the global variables are stored in a region known as permanent

storage area.

The local variables are stored in another area called stack.

The memory space between these two areas is available for dynamic allocation during

execution of the program.

• This free region is called the heap.

• The size of the heap keeps changing.

8

Memory Allocation Functions

malloc

• Allocates requested number of bytes and returns a pointer to the first byte of the
allocated space.

calloc

• Allocates space for an array of elements, initializes them to zero and then returns a
pointer to the memory.

free

• Frees previously allocated space.

realloc

• Modifies the size of previously allocated space.

9

Allocating a Block of Memory

A block of memory can be allocated using the function malloc.

• Reserves a block of memory of specified size and returns a pointer of type void.

• The return pointer can be type-casted to any pointer type.

General format:

ptr = (type *) malloc (byte_size);

10

Allocating a Block of Memory

Examples

p = (int *) malloc(100 * sizeof(int));

• A memory space equivalent to 100 times the size of an int bytes is reserved.

• The address of the first byte of the allocated memory is assigned to the pointer p of

type int.

p

400 bytes of space

11

Allocating a Block of Memory

cptr = (char *) malloc (20);

• Allocates 20 bytes of space for the pointer cptr of type char.

sptr = (struct stud *) malloc (10 * sizeof (struct stud));

• Allocates space for a structure array of 10 elements. sptr points to a structure element of

type “struct stud”.

12

Points to Note

malloc always allocates a block of contiguous bytes.

• The allocation can fail if sufficient contiguous memory space is not available.

• If it fails, malloc returns NULL.

if ((p = (int *) malloc(100 * sizeof(int))) == NULL)

{

printf (“\n Memory cannot be allocated”);

exit() ;

}

13

Can we allocate only arrays?

malloc can be used to allocate memory for single variables also

• p = (int *) malloc (sizeof(int));

• Allocates space for a single int, which can be accessed as *p

• Single variable allocations are just special case of array allocations

• Array with only one element

14

malloc()-ing array of structures
typedef struct{

char name[20];

int roll;

float SGPA[8], CGPA;

} person;

int main() {

person *student;

int i,j,n;

scanf("%d", &n);

student = (person *)malloc(n*sizeof(person));

for (i=0; i<n; i++) {

scanf("%s", student[i].name);

scanf("%d", &student[i].roll);

for(j=0;j<8;j++) scanf("%f", &student[i].SGPA[j]);

scanf("%f", &student[i].CGPA);

}

return 0;

}

15

Altering the Size of a Block

Sometimes we need to alter the size of some previously allocated memory block.

• More memory needed.

• Memory allocated is larger than necessary.

How?

• By using the realloc function.

If the original allocation is done as:

ptr = malloc (size);

then reallocation of space may be done as:

ptr = realloc (ptr, newsize);

16

Altering the Size of a Block

• The new memory block may or may not begin at the same place as the old one.

• If it does not find space, it will create it in an entirely different region and move the

contents of the old block into the new block.

• The function guarantees that the old data remains intact.

• If it is unable to allocate, it returns NULL and frees the original block.

17

Using the malloc’d Array

Once the memory is allocated, it can be used with pointers, or with

array notation

Example:

int *p, n, i;

scanf(“%d”, &n);

p = (int *) malloc (n * sizeof(int));

for (i=0; i<n; ++i)

scanf(“%d”, &p[i]);

The n integers allocated can be accessed as *p, *(p+1), *(p+2),…,

*(p+n-1) or just as p[0], p[1], p[2], …,p[n-1]

18

Example

printf("Input heights for %d

students \n",N);

for (i=0; i<N; i++)

scanf ("%f", &height[i]);

for(i=0;i<N;i++)

sum += height[i];

avg = sum / (float) N;

printf("Average height = %f \n",

avg);

free (height);

return 0;

}

int main()

{

int i,N;

float *height;

float sum=0,avg;

printf("Input no. of students\n");

scanf("%d", &N);

height = (float *)

malloc(N * sizeof(float));

19

Releasing the allocated space: free

An allocated block can be returned to the system for

future use by using the free function

General syntax:

free (ptr);

where ptr is a pointer to a memory block which has been

previously created using malloc

Note that no size needs to be mentioned for the allocated

block, the system remembers it for each pointer returned

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
0

Arrays of Pointers

21

Static array of pointers

#define N 20

#define M 10

int main()

{

char word[N], *w[M];

int i, n;

scanf("%d",&n);

for (i=0; i<n; ++i) {

scanf("%s", word);

w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));

strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);

return 0;

}

22

Static array of pointers

#define N 20

#define M 10

int main()

{

char word[N], *w[M];

int i, n;

scanf("%d",&n);

for (i=0; i<n; ++i) {

scanf("%s", word);

w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));

strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);

return 0;

}

4

Tendulkar

Sourav

Khan

India

w[0] = Tendulkar

w[1] = Sourav

w[2] = Khan

w[3] = India

Output

23

w

0

1

2

3

9

How it will look like

T e n d u l k a r \0

S o u r a v \0

K h a n \0

I n d i a \0

24

Pointers to pointers

Pointers are also variables (storing addresses), so they

have a memory location, so they also have an address

Pointer to pointer – stores the address of a pointer

variable

int x = 10, *p, **q;

p = &x;

q = &p;

printf(“%d %d %d”, x, *p, *(*q));

will print 10 10 10 (since *q = p)

25

Allocating pointer to pointer

int **p;

p = (int **) malloc(3 * sizeof(int *));

p

p[2]

p[1]

p[0]

int ** int *

int *

int *

26

Dynamic arrays of pointers

int main()

{

char word[20], **w; /* “**w” is a pointer to a pointer array */

int i, n;

scanf("%d",&n);

w = (char **) malloc (n * sizeof(char *));

for (i=0; i<n; ++i) {

scanf("%s", word);

w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));

strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i, w[i]);

return 0;

}

27

Dynamic arrays of pointers

int main()

{

char word[20], **w; /* “**w” is a pointer to a pointer array */

int i, n;

scanf("%d",&n);

w = (char **) malloc (n * sizeof(char *));

for (i=0; i<n; ++i) {

scanf("%s", word);

w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));

strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i, w[i]);

return 0;

}

5

India

Australia

Kenya

NewZealand

SriLanka

w[0] = India

w[1] = Australia

w[2] = Kenya

w[3] = NewZealand

w[4] = SriLanka

Output

28

w 0

1

2

3

4

How this will look like

I n d i a \0

S r i L a n k a \0

A u s t r a l I a \0

K e n y a \0

N e w Z e a l a n d \0

29

Dynamic allocation of 2-D Arrays

int **allocate (int h, int w)

{

int **p;

int i, j;

p = (int **) malloc(h*sizeof (int *));

for (i=0;i<h;i++)

p[i] = (int *) malloc(w * sizeof (int));

return(p);

}

Allocate array

of pointers

Allocate array of

integers for each

row

void read_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

for (j=0;j<w;j++)

scanf ("%d", &p[i][j]);

}

Elements accessed

like 2-D array elements.

30

void print_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

{

for (j=0;j<w;j++)

printf ("%5d ", p[i][j]);

printf ("\n");

}

}

int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

read_data (p, M, N);

printf ("\nThe array read as \n");

print_data (p, M, N);

return 0;

}

Dynamic allocation of 2-D Arrays

31

void print_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

{

for (j=0;j<w;j++)

printf ("%5d ", p[i][j]);

printf ("\n");

}

}

int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

read_data (p, M, N);

printf ("\nThe array read as \n");

print_data (p, M, N);

return 0;

}

Give M and N

3 3

1 2 3

4 5 6

7 8 9

The array read

as

1 2 3

4 5 6

7 8 9

Dynamic allocation of 2-D Arrays

32

Memory layout in dynamic allocation

int **allocate (int h, int w)

{

int **p;

int i, j;

p = (int **)malloc(h*sizeof (int *));

for (i=0; i<h; i++)

printf(“%10d”, &p[i]);

printf(“\n\n”);

for (i=0;i<h;i++)

p[i] = (int *)malloc(w*sizeof(int));

return(p);

}

int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

for (i=0;i<M;i++) {

for (j=0;j<N;j++)

printf ("%10d", &p[i][j]);

printf(“\n”);

}

return 0;

}

33

Output

3 3

31535120 31535128 31535136

31535152 31535156 31535160

31535184 31535188 31535192

31535216 31535220 31535224

Starting address of each

row, contiguous (pointers

are 8 bytes long)

Elements in each

row are contiguous

Practice problems

Take any of the problems you have done so far using 1-d arrays or 2-d arrays. Now

do them by allocating the arrays dynamically first instead of declaring then

statically

34

